

Simplifying
Database Design

Josh Berkus
PostgreSQL Experts, Inc.
O'Reilly OSCON 2009

How Not To Do It
four popular methods

1. One Big Spreadsheet

2. Hashes, EAV & E-Blob

ID Property Setting

407 Eyes Brown

407 Height 73in

407 Married? TRUE

408 Married? FALSE

408 Smoker FALSE

408 Age 37

409 Height 66in

ID Properties

407 <eyes=”brown”><height=”73”>
<married=”1”><smoker=”1”>

408 <hair=”brown”><age=”49”>
<married=”0”><smoker=”0”>

409 <age=”37”><height=”66”>
<hat=”old”><teeth=”gold”>

3. Incremental Development

4. Leave It to the ORM

Data Modeling

Entity Resource Diagram

Unified Modeling Language

Wait, which standard?

Simple Bulletin Board
Database Design

Database As Model

1. Your database is a model of your application

2. Your application is a model of your problem
domain

conclusion: you can simply model the database as
a derivative of your problem domain

corollary: if you don't understand your database,
you don't understand the problem you're solving

Get Together
Your Whole Dev Team

Why the whole team?

● You need to know the entire problem you're
modeling through the database.

● Some developers may be working on specific
features which need database support which
the managers forget about.

● All developers need to understand that the
database is part of the software development
and release cycle.

Start with a List
“things” we need to store

● Forums
● Threads
● Posts
● Users
● Administrators
● Messages

Users

Simple Relationships

Posts

Admins

Categories

Threads
Messages

Users

Figure out the Attributes
of each “thing”

Admins

● name
● email
● login
● password
● status

Users

Figure out what kind of data

Admins

● name text
● email text – special
● login text
● password text
● status char

Repeat for all “Things”

● forums
– name, description,

owner, created

● threads
– name, description,

owner, created

● posts
– created, owner,

content, flag

● messages
– sender, recipients,

subject, content

OK, Now Get Out!

All
the Relational Theory

You Need to Know
in 20 Minutes

Interlude

E.F. Codd
Database Engineer, IBM 1970

IBM Databases Run Amok

1.losing data

2.duplicate data

3.wrong data

4.crappy performance

5.downtime for database redesign
whenever anyone made an

application change

The Relational Model

Set (Bag) Theory

Relations

Relation
(table, view, rowset)

Tuples

Relation
(table, view, rowset)

Tuple (row)Tuple (row) Tuple (row)

Tuple (row)Tuple (row)

Attributes

Relation
(table, view, rowset)

Tuple (row) Tuple (row)

Tuple (row)Tuple (row)

Tuple (row)
Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

AttributeAttribute

Attribute Attribute

Domains (types)

Relation
(table, view, rowset)

Tuple (row) Tuple (row)

Tuple (row)Tuple (row)

Tuple (row)
INT

DATE

TEXT

DATE

TEXT

Attribute

Attribute

DATE

TEXT

Attribute

Attribute

DATE

TEXT

Attribute

Attribute

DATE

TEXT

INTINT

INT INT

Keys

Relation
(table, view, rowset)

Tuple (row) Tuple (row)

Tuple (row)Tuple (row)

Tuple (row)
Attribute

Attribute

Attribute

Attribute

AttributeKey

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

KeyKey

Key Key

Constraints

Relation
(table, view, rowset)

Tuple (row) Tuple (row)

Tuple (row)Tuple (row)

Tuple (row)
Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

AttributeAttribute

Attribute Attribute

Attribute > 5

Foreign Key Constraint

Derived Relation (query)

Atomic Data

Users

Non-Atomic Attributes

Admins

● name (text)
● email (text)
● login (text)
● password (text)
● status (char)

Atomic, Shmomic. Who Cares?

● Atomic Values:
– make joins easier

– make constraints easier

● Non-atomic Values:
– increase CPU usage

– make you more likely to forget something

What's Atomic?

The simplest form of a datum, which is not
divisible without loss of information.

name
Josh Berkus

Status
a

SELECT SUBSTR(name,STRPOS(name, ' ')) ...

… WHERE status = 'a' or status = 'u' ...

What's Atomic?

The simplest form of a datum, which is not
divisible without loss of information.

first_name
Josh

active
TRUE

last_name
Berkus

access
a

Users

Table Atomized!

Admins

● first_name (text)
● last_name (text)
● email (text)
● login (text)
● password (text)
● active (boolean)
● access (char)

Users

Where Are My Keys?

Admins

● first_name (text)
● last_name (text)
● email (text)
● login (text)
● password (text)
● active (boolean)
● access (char)

Key

Users

Candidate (Natural) Keys

Admins

● first_name (text)
● last_name (text)
● email (text)
● login (text)
● password (text)
● active (boolean)
● access (char)

A Good Key

● Should have to be unique because the
application requires it to be.

● Expresses a unique predicate which describes
the tuple (row):

– user with login “jberkus”

– post from “jberkus” on “2009-05-02 13:41:22” in
thread “Making your own wine”

● If you can't find a good key, your table design is
missing data.

Key

Users

Surrogate Key

Admins

● first_name (text)
● last_name (text)
● email (text)
● login (text)
● password (text)
● active (boolean)
● access (char)

● user (serial)

When shouldn't I
use surrogate keys?

● As a substitute for real keys
– not ever

● If the real key works for the application
– it's a single column

– it's small

● For Join Tables (more later)
● If they are not going to be used

– leaf tables

When should I
use surrogate keys?

● If the real key is complex or really large
– 4 columns

– large text field

– time range

● If your application framework requires them
– but probably better to get a better framework

● If you're doing data warehousing
– where the bytes count

But wait, aren't ID fields “faster”?

No.

While INTs are smaller,

joins are expensive.

Test twice, design once.

users: no surrogate key
create table users (

first_name text not null check
(length(first_name) between 1 and 40),

last_name text not null check
(length(last_name) between 2 and 30),

login text not null unique check
(length(login) between 4 and 30),

password text not null check
(length(login) between 6 and 30),

email email not null unique,
description text,
icon text,
level integer not null default 1

references access_levels (level)
on update cascade on delete set default,

active boolean not null default TRUE
);

posts: surrogate keys

create table posts (
post SERIAL not null unique,
thread integer not null references threads(thread)

on delete cascade on update cascade,
created timestamp with time zone

not null default current_timestamp,
owner text not null

references users (login) on update cascade
on delete cascade,

content text not null,
flag char(1) references flags(flag)

on update cascade on delete set null
constraint posts_key unique (thread, created, owner)

);

Constraints
for clean data

● Are there to prevent “bad data”.
– allow you to rely on specific assertions being

true

– prevent garbage rows

– deter application errors
● and stupid display problems

Is VARCHAR(#) a Constraint?

● No, not really
– if you need an upper limit, you probably need a

lower limit

● but … data types are primitive constraints
– just not constraining enough to prevent bad

input

Defaults
for convenience

● Allow you to forget about some columns
– help support “NOT NULL” constraints

● Let you set values for “invisible” columns
– like auditing information

● Let you set things “automatically”
– like created on current_timestamp

But my Application Code
Takes Care of Data Format!

● Maybe
– you probably don't want to make column

constraints too restrictive

– allow some room for cosmetic changes
● and non-essential data

● Maybe Not
– applications have bugs

– everything has a RESTful interface now

– NULLs can behave very oddly in queries

No Constraints

first_name last_name email login password active level
Josh Berkus TRUE a
NULL NULL k NULL FALSE u
Mike Hunt c34521 c34521 TRUE I

S F gavin twitter NULL x

josh@pgexperts.com jberkus jehosaphat
kelley@ucb

www.pornking.com
gavin@sf.gov

Constraints and Defaults

● first_name text
– not null check (length between 1 and 40)

● last_name text
– not null check (length between 2 and 40)

● email text not null ???
● login text

– not null unique check (length between 4 and 40)

● password text
– not null unique check (length between 6 and 30)

Constraints and Defaults

● active boolean
– not null default TRUE

● access char(1)
– not null check in('a','u') default 'u'

● user_id serial
– not null unique

Gee, that was easy!
is that all there is?

Well, no. It gets more complicated.
See you after the break.

We All Just Want to Be Normal

Abby Normal

login level last_name

jberkus u Berkus

selena a Deckelman

login title posted level

jberkus Dinner? 09:28 u

selena Dinner? 09:37 u

jberkus Dinner? 09:44 a

Abby Normal

login level last_name

jberkus u Berkus

selena a Deckelman

login title posted level

jberkus Dinner? 09:28 u

selena Dinner? 09:37 u

jberkus Dinner? 09:44 a

How can I be “Normal”?
1. Each piece of data only appears in one relation

– except as a “foreign key” attribute

● No “repeated” attributes

login level last_name

jberkus u Berkus

selena a Deckelman

login title posted

jberkus Dinner? 09:28

selena Dinner? 09:37

jberkus Dinner? 09:44

But What's Really “Non-Repeated”?

login level privileges

jberkus u read,post,search

selena a read,post,search,edit,delete,ban

webcrawler r read

mike u read,post,search

carol u read,post,search

obviously repeated

But What's Really “Non-Repeated”?
login level

jberkus u

selena a

webcrawler r

mike u

carol u

non-repeated

level read post search edit delete ban

u t t t f f f

a t t t t t t

r t f f f f f

But What's Really “Non-Repeated”?
login level

jberkus u

selena a

webcrawler r

mike u

carol u

non-repeated

level name

u user

a administrator

r read-only

level privilege

u read

u post

u search

r read

a delete

a ban

a post

How do you decide between
one/several tables?

● Simple Rule: “one thought, one table”
– like “one thought, one paragraph”

● You probably need more tables if:
– there's no unique key

– there's more than one unique key

● You may need less tables if:
– you're doing lots of one-to-one joins

How do you decide between
one/several tables?

● Otherwise, it's based on the Application
● how does the application use the data?

– does it want an array?

– use a flat series of columns

● does it want a single fact or check?
– do you expect to add new types a lot?

– use a vertical child table

But wait, doesn't Normalization
have something to do with ID fields
and everything in a lookup table?

No.

Special Case #1:
many-to-many relationships

level name

u user

a administrator

r read-only

access_levels

privilege

read

search

post

delete

ban

privileges

level privilege

r read

u read

u search

a search

a delete

access_level_privileges

Join Tables

● Contain only the keys of two or more other
tables

● Should have a single unique index across all
keys

● Should have Foreign Keys to all the other
tables with CASCADE

Special Case #2:
Lookup Tables

for constraints

privilege

read

search

post

delete

ban

privileges

level privilege

r read

u read

u search

a search

a delete

access_level_privileges

Special Case #2:
Lookup Tables
dimension tables

first_name last_name city

Josh Berkus 2

David Fetter 3

Selena Deckelman 17

Miho Ishakura 2

David Gould 3

Robert Treat 42

Bruce Momjian 91

city name state

2 San
Francisco

CA

3 Oakland CA

17 Portland OR

42 Washington DC

91 Philadelphia PA

When do I use Dimension Tables?

● When there's multiple facts/levels to the
dimension

– locations

– demography

● When you need to save space
– really, really big tables (millions of rows)

● Do not use them “just because”.
– dimension tables are not normalization

Special Case #3:
Tree Structures

● Developers want posts to “nest”
– posts should form a tree, one under the other

● “Palio Restaurant” July 19th

– “Re: Palio Restaurant” July 21st
● “Re: Re: Palio Restaurant” July 23rd
● “Re: Re: Palio Restaurant” July 24th

– “Re: Palio Restaurant” July 23rd

Tree Structures:
Proximity Tree

● Each item has a link to its parent item
– post 34 | parent_post 21

● Advantages
– most common

– fast to update

● Disadvantages
– slow to query

– requires WITH RECURSIVE or
CONNECT_BY()

Tree Structures:
 Path Fields

● Each item has a full “path” of its parentage
– post 34 | path 7,21,26

● Advantages
– fast to sort

– fast to query & search

● Disadvantages
– slow to update

– requires non-standard SQL extensions
● or text parsing

posts Table
create table posts (

post SERIAL not null unique,
thread integer not null references threads(thread)

on delete cascade on update cascade,
parent_post integer references posts(post)

on delete cascade on update cascade,
created timestamp with time zone

not null default current_timestamp,
owner text not null references users (login)

on update cascade on delete cascade,
content text not null,
flag char(1) references flags(flag)

on update cascade on delete set null
constraint posts_key unique (thread, created, owner)

);

Special Case #4:
Extensible Data

● Developers want admins to be able to create
“flexible profiles”

– series of items

– undefined at installation time

● Josh Berkus
– male

– bearded

– wears glasses

Extensible Data:
Entity-Attribute-Value

ID Property Setting

407 Eyes Brown

407 Height 73in

407 Married? TRUE

408 Married? FALSE

408 Smoker FALSE

408 Age 37

409 Height 66in

property format

Eyes text

Height number

Married? boolean

Age number

Smoker boolean

EAVil
● Space-consumptive

– many many rows, lots of row overhead

● Enforcing constraints by procedural code
– very CPU-intensive

● Can't make anything “required”
● Can't index effectively
● Many-Way Joins

– selecting combinations performs horribly

● however, you can cascade-drop

EAVil

● All unmarried men with red hair under 30

SELECT first_name, last_name
FROM users

JOIN user_profiles married USING (login)
JOIN user_profiles men USING (login)
JOIN user_profiles hair USING (login)
JOIN user_profiles age USING (login)

WHERE married.property = 'Married?'
and married.value::BOOLEAN = FALSE

AND men.property = 'Gender' and men.value = 'm'
AND hair.property = 'Hair' and hair.value = 'Red'
AND age.property = 'Age' and age.value::INT < 30

E-Blob

ID Properties

407 <eyes=”brown”><height=”73”>
<married=”1”><smoker=”1”>

408 <hair=”brown”><age=”49”>
<married=”0”><smoker=”0”>

409 <age=”37”><height=”66”>
<hat=”old”><teeth=”gold”>

E-Blobby

● Slow to update, slow to search
– need to use application code or lots of parsing

● Requires special database extensions
– XML, hstore, etc.

● Advantages over EAV
– smaller storage space (with compression)

– no horrible joins

– combinations easier

– feeds directly into application code

How to Decide:
EAVil vs. ThE-Blob

● Will you be searching for specific items?
– EAVil

● Will you be just spitting out all data to the
application?

– E-Blob

● Do you have special DB extenstions?
– E-Blob

When Not to use EAV & E-Blob

● As the foundation for all of your data
– non-relational databases do this better

● For data which has important checks and
constraints

– or is required

● For data which needs to be searched fast
● As a way of modifying your application

– alter the database!

E-blob: The users Table
create table users (

first_name text not null
check (length(first_name) between 1 and 40),

last_name text not null
check (length(last_name) between 2 and 30),

login text not null unique
check (length(login) between 4 and 30),

password text not null
check (length(login) between 6 and 30),

email email not null unique,
description text,
icon text,
level integer not null default 1

references access_levels (level)
on update cascade on delete set default,

active boolean not null default TRUE,
profile xml

);

Managing Change

Making a DB Schema is a Process
not an end result

● Waterfall is Dead
– don't make the schema static and the

application dynamic

– if you use Aglie/TDD/etc. for app, use it for DB

– Plan to Iterate

Software Development Cycle (TDD)

create
specification

write tests

develop
software

deploy
new version

get user
feedback

Database Development Cycle (TDD)

write data
requirements

write tests

develop
new
schema

deploy
new schema

get
developer
feedback

But wait, how do I manage change
without breaking the application?

● The same as for software development

1)Testing

2)Migrations

3)Backwards-compatible APIs

Testing

● Unit tests for database objects
– especially stored procedures

● Application tests for application queries
– need to be able to run all application queries

and test for breakage

● Performance Regression tests
– make sure you're not breaking performance

Migrations

● For each schema change, write a SQL
migration

– use transactional DDL (if available)

● Sequence these updates
– tie them to application updates

● Watch out for irreversability
– unlike application migrations, database

reversions may destroy data

Backwards-Compatible API

Views

Views: Messages Table

● messages are sent from one user to one user
create table messages (

message SERIAL not null unique,
sender text not null references users(login)

on delete cascade on update cascade,
recipient text not null references users(login)

on delete cascade on update cascade,
sent timestamp with time zone

not null default current_timestamp,
subject text not null

check (length(subject) between 3 and 200),
content text not null

);
● developers want multiple recipients

– but, they don't want to refactor all code

1. Create message_recipients

create table message_recipients (
message int not null references

messages(message)
on delete cascade on update cascade,

recipient text not null references users(login)
on delete cascade on update cascade,

constraint message_recipients_key
unique (message, recipient)

);

2. Rename and modify messages

INSERT INTO message_recipients
SELECT message, recipient FROM messages;

ALTER TABLE messages
NAME to message_contents;

ALTER TABLE message_contents
DROP COLUMN recipient;

3. Create VIEW for backwards
compatibility

CREATE VIEW messages AS
SELECT message, sender,
array_agg(recipient),
sent, subject, content

FROM message_contents JOIN
message_recipients
USING (message)

GROUP BY message, sender,
sent, subject, content;

Some Good Practices
“practice doesn't make perfect,
perfect practice makes perfect.”

Consistent, Clear Naming

● Pick a Style, and Stick To It
– plural tables or singular?

– camel case or underscore?

– have a “stylebook” for all developers

● Name objects what they are
– don't abbreviate

– don't use “cute” or “temporary” names

● If the object changes, change its name

Comment Your DB

● Use COMMENT ON … IS
– describe each object

– if you have time, each column

– keep comments up to date

– just like you would with application code

comment on table privileges is 'a list of application
privileges which can be assigned to various privilege
levels.';

Use Source Code Management

● DDL (data definition language) is Text
– check it into Git/SVN/Mercurial/Bazaar

– version it

Some Bad Practices

Premature Optimization

● Don't do anything “for performance” which
compromises the logical model of your data

– unless you've tested it thoroughly first

● Poor optimization limits your throughput
– but you can always buy more hardware

● Poor design can result in days of downtime
– besides, database engines are designed to

optimize for good design

“Downtime is more costly
than slow throughput”

Premature Optimization:
Five Warning Signs

1)Are you choosing data types according to
which is “faster”?

2)Do you find yourself counting bytes?

3)Did you disable foreign keys and constraints
because they were “too slow”?

4)Have you “denormalized” or “flattened” tables
to make them “faster”?

5)Do you find yourself trying to override the query
planner?

Polymorphic Fields

● Fields which mean different things depending
on the value of another field

result link_type link

309 URL http://www.postgresql.org

4718 port 443

5223 OS 88

9001 application 1915

Magic Numbers

ID = 0

2009-02-30

2000-01-01

-1, 1,2,3,4,5 100

Summary

1)The database is a simplified model of the
problem you're solving

2)It can be designed simply by working with the
development team on creating lists

3)Relational Theory is simple and has only a few
rules.

4)Normalization simply means removing
duplication

Summary

5)Designing a Table in 5 simple steps:

1)list your attributes

2)make them atomic

3)choose data types

4)choose keys

5)add constraints and defaults

Summary

6) For any given set of data, there are several
possible structures: pick the one the application
likes.

7) Dimension tables aren't for everyone.

8) Four Special Cases require Special SQL:

1) Many-to-Many Join Tables

2) Lookup tables and Dimension Tables

3) Tree Structured Data

4) Extensible Data

Summary

9) Managing Changes

1) Testing

2) Migrations

3) Views & Procedures as Compatible API

10) Follow Good Practices

11) Avoid Bad Practices

More Information
● me

– josh@pgexperts.com

– www.pgexperts.com

– it.toolbox.com/blogs/database-soup

● postgresql
– www.postgresql.org

● at OSCON
– PostgreSQL booth

– State of Lightning Talks (Thursday 1:45)

This presentation copyright 2009 Josh Berkus, licensed for distribution under the
Creative Commons Attribution License, except for photos, most of which were
stolen from other people's websites via images.google.com. Thanks, Google!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112

